

Fourth Annual International Planetary Probe Workshop

(Pasadena, California, June 27-June 30, 2006)

Mahadeva P. Sinha

Jet Propulsion Laboratory Pasadena, California

and

Mark V. Wadsworth

Tangent Technologies, Inc. Monrovia, California

Objective:

Development of a highly miniaturized, high performance mass spectrometer for determining the molecular, and elemental/isotopic composition of species present in planetary atmosphere, and surface/rock materials.

Applications:

- Mars follow-on missions, and missions to Outer planets
- Instrument to a number of NASA Applications
 (planetary rovers, planetary aerobots, entry probes and aerocapture entry systems)
- Monitoring environments in Human Exploration and Planetary Habitats
- Environmental, and Industrial Applications

MINIATURE MASS SPECTROMETER (MMS)

NONSCANNING/FOCAL PLANE GEOMETRY PROVIDES:

- Simultaneous Measurement Of Different Mass Ions, AND, THEREFORE, 100 % DUTY CYCLE
- Relative Intensities not affected by changes in Ion source
- high Sensitivity/Detectivity
- fast Analysis
- narrow Peaks/ transient Samples

The above attributes make a nonscanning mass spectrometer uniquely suited for several applications. These include:

- Isotope ratio measurements
- -Combination with a microbore/micromachined GC columns
- Time-resolved measurements
- Laser-ablated material pulse measurements

(e.g.., Age-dating of rocks)

- Signal Integration

MINIATURE MASS SPECTROMETER

RECENT RESULTS:

Kr Isotopes

Xe Isotopes

Desired features of the array detector include:

- Direct ion detection (i.e., faraday cup mode of operation)
- High spatial resolution
- Sensitivity (preferably an inherent gain in charge domain)
- Low noise and dark current

The CCD ion detector array developed in our laboratory meets the above requirements.

Other benefits of this approach are

- Electron Multiplication not needed (the trajectory of electrons are easily affected by the fringe magnetic field adversely affecting the analyzer performance)
- Effect of field penetration (MCP HV) into the Magnetic sector is eliminated
- Allows performance of MS at higher pressures.

Technology: The detector consists of a linear array of capacitive elements coupled to a CCD register by means of charge-mode input structure.

Unit cell of the Ion Detector

Benefits of modified-CCD detector with Fill-and-Spill Input Structure:

- Requires only one charge-to-voltage conversion
- Linearity of greater than 100 db
- Negligible offset level
- Gain in charge domain
- Eliminates potential offsets due to threshold voltage variations between gates during operation
- Removes kTC noise components that would otherwise be present as a result of filling a well with charge via a diode source.
- Provides larger dynamic range (CCD typically supports operating voltage of 15 v)

Unit cell of the Ion Detector

Fill-and-Spill Mode made operational (in collaboration with the industrial partner OI analytical, Inc.)

Performance of MMS

Weight (MMS)	1-1.2 Kg (Includes Power Supply and Pump)	
Power (MMS)	2-4 W (operational), mW (standby)	
MMS dimensions	10 cm x 5 cm x 5cm	
Ion source	Thermionic	
Mass range	2 - 200 u	
Sensitivity	5-10 ions	
Resolution	~312	
Isotope ratio measurement	High reprodubility and precision	
Compatibility with	Uniquely suited because of 100 % duty cycle	
microbore GC		
Dynamic range	$10^4 - 10^5$	

Current Work:

- Further CCD detector development
- Measurement of Fe and O isotopes in Fe-bearing minerals (ASTID task)
- Chemical and Isotopic Analysis of Laser-ablated Neutrals (PIDDP task)

Fe and O isotopes in Fe-bearing minerals:

Advantages of the Methodology:

- Involves only Gas-Solid reactions (no wet chemistry)
- reactions controlled by Temperature and Pressure
- Fe(CO)₅ has high vapor pressure facilitating sample introduction and mass spectral measurement
- no isotopic fractionation in the reaction steps (*Talanta*, 2006)
- amenable for space applications (mms, internal calibration)

Science Significance

Isotopic composition of Fe in minerals will provide

- evidence of the presence of Water (their hydrological cycle)
- paleoenvironmental conditions for the formation of the mineral
- their possible biological origin

Chemical and Isotopic Analysis of Laser-ablated Neutrals

Table I: Ionization Efficiency in Laser Ablation

Laser Energy (J)	Atoms eroded per laser shot	Ions created per laser shot	Ions created per atom eroded
0.2	~10 ¹⁷	$5 \times 10^{12} \text{ to}$ 2×10^{14}	3 x 10 ⁻³ to 10 ⁻⁵
0.003 to	3 x 10 ¹³	$6 \times 10^{11} \text{ to}$ 10^{12}	3 x 10 ⁻²
0.005 to 0.01	$2 \times 10^{14} \text{ to}$ 5 x 10 ¹⁴	2 x 10 ¹¹	4 x 10 ⁻⁴
0.85	10 ¹⁷	3×10^{13} to 3×10^{14}	3 x 10 ⁻³ to 5 x10 ⁻⁵
4	8 x 10 ¹⁷	6×10^{12}	8 x 10 ⁻⁶

Table II: Comparison of the Efficiency of Measurement

Secondary Ion Pulse Width	Width of the ion pulse generated after post ionization of the neutrals produced by the laser ablation = 100 – 1000 μs
Time-of-	Low duty cycle,
Flight	Assuming ion extraction pulse of
Mass Spectrometer	10ns, the duty cycle for sample ion
	measurement is 10^{-4} - 10^{-5} per flight
,	(20 μs)
Quadrupole MS/	Not Suitable,
Magnetic Sector	complete mass scan during
(scanning)	the short existence of the ion pulse
	in the source region is not feasible
Focal Plane MMS	Uniquely suited,
(nonscanning)	Efficient utilization of the entire
	signal pulse is enabled by 100 %
	duty cycle.

Science Contribution: Chemical and Isotopic composition of rocks and soil samples on extraterrestrial bodies will provide an enormous range of information for these bodies, namely;

- geological history, internal and external processes that shaped their evolution,
- age of rocks
- signature of extinct and/or extant life

Summary:

A new miniature mass spectrometer has been developed that possesses

- focal plane geometry
- direct ion measurement with an array detector
- unique enabling measurement capability for chemical and isotopic analysis, and for combination with microbore column GC.

Collaborators:

- 1. Brian Beard & Clark Johnson (University of Wisconsin, Madison)
- Paul Braterman
 (University of North Texas, Denton)
- 3. Mark Wadsworth (Tangent Technologies, Monrovia, CA)
- 4. OI Analytical, Inc. (Pelham, AL)

